Timeline 1801-1802

- Jan 1 through Feb 11 Piazzi discovers/observes the first asteroid, Ceres.
- **September** von Zach publishes Piazzi's observations in *Monatliche Correspondenz*.

- October-November— von Zach publishes orbital analyses by Burckhardt, Olbers, and Piazzi.
- December von Zach publishes orbital elements and search ephemeris of Gauss. Recovers Ceres on night of 1801 Dec 31 1802 Jan 1 using Gauss search ephemeris.

Timeline 1802-Present

- **1840s** Star catalogs refined/standardized, making more accurate observations possible.
- **1895** USNO's Simon Newcomb publishes highly accurate *Tables of the Sun*.
- 1950s 1980s Digital computers and atomic clocks developed and refined; J2000 reference frame adopted for orbital motion and FK5 star catalog reference frame.
- 1990s Present CCD imaging in telescopes; USNO star catalogs enable sub-arc-second angle measurements by telescopes using CCDs.

Reconstruction of the 1801 Discovery Orbit of Ceres via Contemporary Angles-Only Algorithms

Path of Ceres from 1801 January 1 to 1806 May 23. This figure shows what the path of Ceres, as a dwarf planet in the asteroid belt, looked like from the date of Ceres's discovery by Piazzi through its observation by Olbers, Harding, and Bessel in 1805-1806.

The Contemporary Algorithms

Der IOD (Initial Orbit Determination)

- •3 angles-only (RA, DEC) observations
- Long arcs admissible, up to one orbital revolution
- Solves for range via 8th degree polynomial
- Epoch of elements is at middle observation time

HGM IOD - Heliocentric motion

- •n angles-only (RA, DEC) observations
- •n ≥ 3 but subject to short-arc limitation
- Iterates on range guesses for first and last observations
- •Epoch of elements is at first ob time

ORBIT2 Numerical Integration

- Numerically integrates equations of motion of major Solar System planets and "Spare"
- "Spare" can be space probe, comet, asteroid, or dwarf planet
- Starts with DE405 initial state vectors of planets and J2000 initial state vector for "Spare"

Batch UPM DC - Heliocentric motion

- Given n ≥ 3 observations, differentially corrects Der IOD or HGM initial state estimate
- •Uses UPM (Uniform Path Mechanics) to propagate orbit of arbitrary eccentricity (i.e., UPM is a "universal variables" method)

Prepared for the AMOS Conference held September 20-23, 2016 in Maui, Hawaii USA. For further information, visit https://amostech.com/amostechnical-papers/proceedings/

Summary of Findings

- 1. Out of 19 complete Piazzi observations, only two were assessed as "bad" (1801 Jan 3 and Jan 11).
- 2. Ephemeris propagated from contemporary Batch UPM DC solution with 17 best Piazzi observations was slightly *worse* than Gauss's 1801 December search ephemeris.
- . Ephemeris propagated from contemporary Batch UPM DC solution with 3 Piazzi observations* was slightly better than Gauss's 1801 December search ephemeris. (*Used exact same 3 observations that Gauss himself used: 1801 Jan 1, Jan 21, and Feb 11.)